EXAMPLE A Sketch the graph of $y=(x-2)^{4}(x+1)^{3}(x-1)$ by finding its intercepts and its limits as $x \rightarrow \infty$ and as $x \rightarrow-\infty$.
SOLUTION The y-intercept is $f(0)=(-2)^{4}(1)^{3}(-1)=-16$ and the x-intercepts are found by setting $y=0: x=2,-1,1$. Notice that since $(x-2)^{4}$ is positive, the function doesn't change sign at 2 ; thus, the graph doesn't cross the x-axis at 2 . The graph crosses the axis at -1 and 1 .

When x is large positive, all three factors are large, so

$$
\lim _{x \rightarrow \infty}(x-2)^{4}(x+1)^{3}(x-1)=\infty
$$

When x is large negative, the first factor is large positive and the second and third factors are both large negative, so

$$
\lim _{x \rightarrow-\infty}(x-2)^{4}(x+1)^{3}(x-1)=\infty
$$

Combining this information, we give a rough sketch of the graph in Figure 1.

FIGURE I

FIGURE 2

EXAMPLE B Use a graph to find a number N such that

$$
\text { if } \quad x>N \quad \text { then } \quad\left|\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}-0.6\right|<0.1
$$

SOLUTION We rewrite the given inequality as

$$
0.5<\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}<0.7
$$

We need to determine the values of x for which the given curve lies between the horizontal lines $y=0.5$ and $y=0.7$. So we graph the curve and these lines in Figure 2. Then we use the cursor to estimate that the curve crosses the line $y=0.5$ when $x \approx 6.7$. To the right of this number the curve stays between the lines $y=0.5$ and $y=0.7$. Rounding to be safe, we can say that

$$
\text { if } \quad x>7 \quad \text { then } \quad\left|\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}-0.6\right|<0.1
$$

In other words, for $\varepsilon=0.1$ we can choose $N=7$ (or any larger number) in Definition 7.

